A Technique for Seismic Rehabilitation of Damaged Steel Moment Resisting Frames
نویسندگان
چکیده مقاله:
Moment resisting frames as one of the conventional lateral load resisting systems in buildings suffer from some limitations including code limitations on minimum span-to-depth ratio to ensure the formation of plastic hinges with adequate length at beam ends. According to seismic codes, in ordinary steel moment resisting frames the minimum span-to-depth ratios should be limited to 5 and in special steel moment resisting frames this ratio should not be less than 7, which is typically difficult to achieve in some cases. For instance, framed-tube structures typically have moment resisting frames with span-to-depth ratios lower than the above mentioned ranges. Therefore, existing buildings with low span-to-depth ratios may exhibit poor seismic performance when subjected to seismic excitation. In this paper, a method is presented to rehabilitate such moment resisting frames. The novelty of this rehabilitation method is that it can be used not only for intact structures, but also for damaged moment resisting frames after earthquakes to enhance their remaining strength and ductility capacity. While most of the available rehabilitation methods focus on improving the system strength and stiffness, the proposed rehabilitation in this paper is based on the weakening the mid span of the beam which causes the formation of the shear plastic hinge in middle of the beam instead of the two beam ends. Numerical evaluation is conducted to show the efficacy of this method, and the results indicate that the use of the proposed rehabilitation method significantly increase the ductility capacity of the system during subsequent earthquakes.
منابع مشابه
ASSESSMENT OF DUCTILITY REDUCTION FACTOR FOR OPTIMUM SEISMIC DESIGNED STEEL MOMENT-RESISTING FRAMES
In the present study, ten steel-moment resisting frames (SMRFs) having different numbers of stories ranging from 3 to 20 stories and fundamental periods of vibration ranging from 0.3 to 3.0 second were optimized subjected to a set of earthquake ground motions using the concept of uniform damage distribution along the height of the structures. Based on the step-by-step optimization algorithm dev...
متن کاملRobustness Assessment of Steel Moment Resisting Frames
Nowadays, many buildings with steel Moment Resisting Frames (MRF) are built in seismic zones when seismic codes are at its early stages of development, and as such, these structures are often designed solely to resist lateral wind loads without providing an overall ductile mechanism. On the other hand, current seismic design criteria based on hierarchy of resistance allow enhancing the structur...
متن کاملEvaluation of Seismic Behavior of Steel Moment Resisting Frames Considering Nonlinear Soil-structure Interaction
In structural analysis, the base of structures is usually assumed to be completely rigid. However, the combination of foundation and the subsurface soil, makes in fact a flexible-base for the soil-structure system. It is well-known that the structural responses can be significantly affected by incorporating the Soil-structure Interaction (SSI) effects. The aim of the present study is to provide...
متن کاملPERFORMANCE BASED DESIGN OPTIMIZATION OF STEEL MOMENT RESISTING FRAMES INCORPORATING SEISMIC DEMAND AND CONNECTION PARAMETERS UNCERTAINTIES
One of the most important problems discussed recently in structural engineering is the structural reliability analysis considering uncertainties. To have an efficient optimization process for designing a safe structure, firstly it is required to study the effects of uncertainties on the seismic performance of structure and then incorporate these effects on the optimization process. In this stud...
متن کاملSEISMIC OPTIMIZATION OF STEEL MOMENT RESISTING FRAMES CONSIDERING SOIL-STRUCTURE INTERACTION
The main purpose of the present work is to investigate the impact of soil-structure interaction on performance-based design optimization of steel moment resisting frame (MRF) structures. To this end, the seismic performance of optimally designed MRFs with rigid supports is compared with that of the optimal designs with a flexible base in the context of performance-based design. Two efficient me...
متن کاملassessment of the park- ang damage index for performance levels of rc moment resisting frames
چکیده هدف اصلی از طراحی لرزه ای تامین ایمنی جانی در هنگام وقوع زلزله و تعمیر پذیر بودن سازه خسارت دیده، پس از وقوع زلزله است. تجربه زلزله های اخیر نشان داده است که ساختمان های طراحی شده با آیین نامه های مبتنی بر نیرو از نظر محدود نمودن خسارت وارده بر سازه دقت لازم را ندارند. این امر سبب پیدایش نسل جدید آیین نامه های مبتنی بر عملکرد شده است. در این آیین نامه ها بر اساس تغییرشکل های غیرارتجاعی ...
15 صفحه اولمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 8 شماره 4
صفحات 71- 80
تاریخ انتشار 2020-11-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023